
”ˆ‡ˆŠ� �‹…Œ…
’��
›• —�‘’ˆ– ˆ �’�Œ
�ƒ� Ÿ„��
2002. ’. 33. ‚›�. 7

“„Š 539.12.01

GENERATING THE FIBONACCI CHAIN IN
O(log n) SPACE AND O(n) TIME

J. Patera∗

Department of Mathematics, Faculty of Nuclear Science and Physical Engineering,

Czech Technical University, Praha, Czech Republic

On the example of the Fibonacci chain we show how to efˇciently generate inˇnite words
deˇned by substitutions. We introduce substitution trees and we present an algorithm that uses them
to generate such inˇnite words. We use a stack to generate the words in a completely different
manner than in traditional breadth-ˇrst tree traversals. We show that the algorithm has O(log n)
space complexity and O(n) time complexity, where n is the length of the generated word. The
aperiodic Fibonacci chain is used for construction of aperiodic pseudorandom number generators.

INTRODUCTION

In this paper we study a special kind of trees that we call substitution trees.
We use them to represent iterations of substitutions on ˇnite alphabets. The
speciˇty of substitution trees is that, although being inˇnite, they contain only
a very small ˇnite number of different two-level subtrees. We use substitution
trees for efˇcient iteration of the substitutions, which they represent, to generate
a possibly inˇnite word.

The concept of substitution trees can be applied to any substitution, but we
will illustrate it on the Fibonacci substitution and the Fibonacci chain.

We further introduce a new algorithm for breadth-ˇrst tree traversal that
perfectly suits substitution trees. The general breadth-ˇrst (also called level-
order) traversal, as described, for example, by Knuth [3], uses a queue to store
up to one entire level of the tree, i. e., the queue size is O(n), if n is the number
of nodes on the given level. Our new algorithm requires only a stack of size
O(log n), i. e., its size is equal to the tree depth.

We also analyze the time complexity of the new traversal. We show that the
time needed to traverse from a node to the adjacent node on the same level is
not constant, but its average value is bounded. Thus n nodes can be traversed in
O(n) time.

∗e-mail: patera@km1.fjˇ.cvut.cz

226 PATERA J.

The results of this paper can be used, for example, for exact generation
of special aperiodic self-similar point sets, called cut and project sequences
[4, 5]. These sequences are essential for the design of a new type of aperi-
odic pseudo-random number generators (APRNG), introduced in [1] and studied,
for example, in [2].

1. PRELIMINARIES

A substitution θ is a mapping of a ˇnite alphabet A into the set A∗ of
ˇnite words in the letters of A such that θ(a) is nonempty for any a ∈ A. In
particular, the Fibonacci substitution is deˇned on the alphabet A = {A,B} with
substitution rules θ(A) = ABA and θ(B) = AB. A sequence of j-th iterations
of the substitution on the letter A is a sequence of words θj(A) of increasing
length such that θj+1(A) = θj(A)ωj for some words ωj . The inˇnite word
θ∞(A) = ABAABABA..., to which θj(A) converges, is invariant with respect
to this substitution and is called the Fibonacci chain. |w| for some word w
denotes the number of letters in w, we call it the length of w. Further details
on substitutions can be found, e. g., in [6], and particularly on the Fibonacci
substitution in [4].

The Fibonacci numbers will be very often used in this paper, they are deˇned
by the following recurrence:

Fj = Fj−1 + Fj−2, F0 = 0, F1 = 1. (1)

Solving this recurrence, one obtains

Fj =
√

5
−1

(τ j − τ ′j) (2)

and

τ j = Fjτ + Fj−1,

where τ =
1
2
(1 +

√
5) and τ ′ =

1
2
(1 −

√
5).

Let us recall that from (2) it follows that Fj = O(τ j). On the other hand, if
f(k) is increasing for k ∈ N and f(Fj) = O(j), then f(j) = O(log j).

Proposition. Let θ be the Fibonacci substitution. The lengths of words
θj(A) are |θj(A)| = F2j+2 for all non negative integers j.

Proof. Let pA(j) and pB(j) denote the number of letters A and B, respec-
tively, in θj(A). Clearly, pA(j+1) = 2pA(j)+pB(j), pB(j+1) = pA(j)+pB(j),
pA(0) = 1, and pB(0) = 0. It can be shown easily by induction, that pA(j+1) =
F2j+1 and pB(j) = F2j and thus |θj(A)| = F2j+1 + F2j = F2j+2.

GENERATING THE FIBONACCI CHAIN IN O(log n) SPACE 227

This proposition gives the number of iterations of θ that are needed to gener-
ate n elements. Indeed, it can be used to ˇnd j such that F2(j−1)+2 < n ≤ F2j+2.
In Sec. 2, we present an algorithm requiring just j − 1 memory cells (besides the
memory needed for the substitution itself) to generate the ˇrst n elements of the
sequence.

2. SUBSTITUTION TREES

In this section we introduce an efˇcient way of representing iterations of
substitutions, the substitution trees, and we show how to use them to generate the
Fibonacci chain. Let tn, for n ≥ 0, be the n-th letter of the Fibonacci chain, with
t0 = A being the starting letter.

To the Fibonacci substitution, a substitution tree can be assigned. It is a
tree with nodes and edges both labeled. The root node is labeled as A (A is the
starting letter of the substitution) and every other node is labeled either as A or
B. Every A node has |θ(A)| = 3 children nodes, labeled A, B, A, respectively,
in the given order according to the word θ(A) = ABA, and every B node has
|θ(B)| = 2 children nodes, labeled according to θ(B) = AB (see Fig. 1). The
edge connecting a node with its i-th child node is labeled with the index i. We
call the given node with all its descendant nodes a subtree. The subtree rooting
at any A node is isomorphic to the entire tree. Therefore the j-th level of the tree
coincides with the beginning of the (j+ 1)-th level, i. e., θj+1(A) = θj(A)ωj for
certain word ωj , and thus

θj+1(A) = Aω0ω1ω2 . . . ωj . (3)

Fig. 1. The ˇrst 3 levels of the substitution tree for the Fibonacci substitution θ(A) =
ABA, θ(B) = AB. The j-th level of the tree corresponds to the j-th iteration of θ. In
generation of the j-th iteration of θ, the letters to the left of the thick line are skipped as
they correspond to the already generated (j−1)-th level. To ease the notation, we write
An or Bn if the n-th generated letter is A or B, respectively

228 PATERA J.

Letters t0, . . . , tn can be generated either by traversing a single sufˇciently
long level θj(A) from its left end, or using (3) by traversing the right parts of
the levels of the tree, given by the words ωj , starting at the ˇrst level.

Figure 1 shows the ˇrst three levels of the substitution tree for the Fibonacci
substitution. The subscripts of nodes denote the order in which the letters tn are
generated.

We have described the idea of using substitution trees for generation. We
further discuss technical issues of an implementation of the given algorithm.

Each of the substitution rules θ(A) and θ(B) appears repeatedly in many
nodes, and therefore it is impractical to keep the entire tree in the computer
memory or even to construct a long part of it, especially if the required length n
of the Fibonacci chain is not known in advance (and thus the depth of the used
part of the tree). The only data used for generation is a static set of substitution
rules and a stack, as described below. The set of rules does not change within
the generation although, the tree is being repeatedly extended by a new level. On
the other hand, the stack grows by one item whenever a new tree level is started.

The way the substitution tree is traversed is the so-called breadth-ˇrst tra-
versal which traditionally needs a queue to be performed. Instead of a queue,
we use a stack in a completely different way than the stack is used in traditional
breadth-ˇrst traversals [3]. The position of every node ν in a tree is uniquely
determined by the path from ν to the root. The path is given by the sequence of
all ancestors of ν and edges it passes through. The stack is here used to store the
reversed sequence of nodes and edges from the root to the parent of the parent
of ν. Thus the nodes on the two deepest levels are never stored in the stack.
Each item of the stack consists of two parts (letter, index): the node label and
the label of the edge that leads to the node following in the path. We use the
substitution rules represented by the nodes in the (d−1)-th level to generate the
subordinate letters in the d-th level at once, without use of the stack. For example,
when the letters t3 =A and t4 =B are being generated (refer to Fig. 1), the tree
has two levels and the stack consists just of one item: (A, 2), because t3 and t4
are generated by simple application of θ(B) = AB rooting at t1 = B in the ˇrst
level; in this case (A, 2) means the second child node of t0 = A. Whereas when
the third level is started and the letters t8 =A, t9 =B, and t10 =A are generated,
the stack has two items: (A, 2) and (B, 1), representing the second child node of
A0 and the ˇrst child of B1.

The traversing algorithm works as follows. Since generally there are no
direct links between adjacent nodes (i. e., through their common parent node) on
any level, it is occasionally necessary to make a detour through a certain number
of upper levels: to go up in the tree and then to go down again. For example, in
Fig. 1 to go from B12 to A13 we must go back to the root. When the generator
enters, say, the i-th subtree of a node ν, i. e., it goes down from ν to its subtree,
then it pushes the node name ν and the index i to the stack. When all subtrees

GENERATING THE FIBONACCI CHAIN IN O(log n) SPACE 229

of ν of the given depth are traversed, it is necessary to pop the parent node and
edge (a, i) from the stack. The popping is then repeated as long as i = |θ(a)|
for the newly popped values of a and i. This condition checks whether the entire
subtree of a was already traversed. After that the pair (a, i+1) is pushed and the
new a is deˇned as the letter θ(a)i+1. Finally it is necessary to go down the tree
to reach the original level where the popping started. Every level stepped down
is represented by pushing the pair (a, 1) and deˇning new a as θ(a)1. If, in the
above popping, the stack got empty and i = |θ(a)| still holds, then it means that
the entire tree level was traversed, that a new one must be started, and that a new
stack, with one more level than before, must be built. The stack is built in such
a way that the ˇrst subtree of the tree root is skipped, i. e., the built path is the
closest one to the right of the thick line in Fig. 1.

The generation algorithm is given formally in Algorithm 1. It generates the
sequence (ti)

N
i=0, where t0 is the given starting letter A. The used stack stores

pairs (letter, index). The variable l counts the number of stack items that were
popped between generations of two consecutive letters and are thus necessary to
be pushed back. If an entire level gets traversed, l is incremented. It signals that
a deeper stack needs to be built because a new level is about to be started.

stack := empty; a := t0; n := 1; i := 2;
while (n ≤ N) do

while (i ≤ |θ(a)|) do
tn := θ(a)i; n := n+1; i := i+1;

enddo;
l := 0;
while (not stack.isEmpty) and (i > |θ(a)|) do
stack.pop(a, i);
l := l + 1; i := i+ 1;

enddo;
if (stack.isEmpty) then
a := t0; i := 2; l := l + 1;

endif;
repeat
stack.push(a, i);
a := θ(a)i; i := 1; l := l − 1;

until (l = 0);
enddo;
Algorithm 1: Generating N letters of the Fibonacci chain using its substitution
tree.

230 PATERA J.

The fact that after generating n letters of the chain the stack contains as many
pairs (letter, index) as many levels the corresponding generated tree has, leads
us to the following theorem.

Theorem 1. The space complexity of Algorithm 1 for generation of n letters
of the Fibonacci chain is O(log n).

3. TIME COMPLEXITY OF SUBSTITUTION TREES

Performance of every algorithm should be studied from different points of
view. In this section we examine the time characteristics of traversing substitution
trees. We look at the average, best, and worst time needed for generation of a
single letter.

The most time-consuming operations in the tree traversing are the stack
operations. We will further refer to a pair of pushing and popping as to a single
(stack) operation, assuming that the letter production time itself is neglectable.

The average number of operations per generated letter M(n) is the ratio of
the total number of operations for all letters N (n) and the number of letters n.
In the analysis of M(n), we will ˇrst consider the case n = F2j+2, i. e., that an
entire level is generated (see Proposition). When the right part ωj of the j-th
level, i. e., the letters ti with F2j < i ≤ F2j+2, is being generated, every edge
entering any node corresponding to ti, 1 ≤ i ≤ F2j , is pushed to and popped
from the stack, and it is done exactly once. Therefore the generation of the letters
ti, F2j < i ≤ F2j+2 requires Nj := F2j operations. In total, summing for all ωj ,

generation of the sequence (ti)
F2j+2
i=1 requires

N (F2j+2) =
j∑

k=1

Nk =
j∑

k=1

F2k < F1 +
j∑

k=1

F2k = F2j+1

operations.
Obviously, N (n) is a nondecreasing function satisfying N (F2j+2) ≤ F2j+1.

Let now n be an arbitrary positive integer. We have F2j ≤ n ≤ F2j+2 for some
j and therefore the average number of operations per letter is

M(n) =
N (n)
n

<
N (F2j+2)
F2j

< 2τ
N (F2j+2)
F2j+1

< 2τ
F2j+1

F2j+1
< 2τ.

We used the estimate Fj+1/Fj < 2τ following from (2); in limit, the ratio
Fj+1/Fj is τ .

These considerations lead us to the following theorem.
Theorem 2. The Fibonacci chain can be generated using the substitution tree

in O(n) time, where n is the length of the generated word.

GENERATING THE FIBONACCI CHAIN IN O(log n) SPACE 231

We see that in average the number of operations per letter is uniformly
bounded by a constant, independent of n. However, if (ti)

n
i=0 has already been

generated, the upper bound of number of operations needed to determine tn+1

is a function of n. When traversing a substitution tree, it is usually necessary
to go up through the tree and then descend. For example, generating t13 from
t12 requires going up to the tree root. The maximal number of operations per
single letter is therefore equal to the tree depth, i. e., is proportional to logn. On
the other hand, the number of operations is 0 when tn and tn+1 are two direct
children nodes of the same node, such as t13 and t14.

4. SKIPPING n LETTERS IN THE FIBONACCI CHAIN

Algorithm 1 in Sec. 2 generates the Fibonacci chain from the beginning.
Some applications may require a sequence starting at an arbitrary n-th letter,
for example the APRNG needs the ability of starting generation from any seed-
point. This can be done naively by brute-force generating and discarding all the
unnecessary letters. In this section we provide an efˇcient algorithm for starting
generation from any n-th letter. At the end of the section we generalize it to the
skipping of arbitrary n letters at any position.

Starting generation from the n-th letter is equivalent to building a stack
simulating generation of the previous n− 1 letters.

Fig. 2. The process of building a stack for the generation starting from an n-th letter. It
is illustrated on the letter t17 of the substitution tree for the Fibonacci substitution. The
nodes α, β, γ, δ, and ε must be traversed before the letter t17 is reached

In the substitution tree for the Fibonacci substitution, the number of letters
on any level of any subtree can always be determined. Let % : {A,B} × N → N

be deˇned as follows:

%(a, j) :=

{
F2j+2, for a = A
F2j+1, for a = B

.

232 PATERA J.

According to Proposition and its generalization for letter B, %(a, j) gives the
number of letters on the j-th level of the tree for θj(a), i. e., %(a, j) = |θj(a)|.

Let us assume that we want to skip n letters, i. e., to start generation from the
(n+1)-th letter. We determine the level on which the (n+1)-th letter resides. We
then build the path to it from the tree root and we store the path in the stack. The
resulting stack is the desired stack. We illustrate the stack building on n = 17.
The algorithm has three parts (refer to Fig. 2):

• Determine the tree depth d. Find d such that |θd−1(A)| ≤ n < |θd(A)|,
then the tree will have d levels and the constructed stack will have d−1 items.
In our case, d = 3 since (8 =) F2·2+2 ≤ n < F2·3+2 (= 21).

• Build the stack by a single deterministic walk down the tree from the top
to the right bottom, starting at the ˇrst node of the ˇrst level. In every node ν
determine, using the % function, whether the ˇnite subtree rooting at this node
should be skipped entirely or if it contains the (n+1)-th letter. If it does contain
the letter, the path continues in this subtree and therefore we push the position
of this descendant node (i. e., its parent ν and the edge connecting them) into
the stack and we enter the subtree on the left-most node of its ˇrst level. If it
does not contain the letter, we repeat the procedure on the right sibling node of ν
(there always is such a node, this follows from the way the path is determined).
The procedure is repeated recursively until the stack has d−1 items. We always
start on the left-most node of the ˇrst level.

In our example, the left-most node is denoted by α. α contains %(A, 2) = 8
letters which is less than 17. Therefore we skip it and proceed to the subtree root
β. It contains %(B, 2) = 5 letters which is less than n − %(A, 2) = 17 − 8 = 9,
therefore we also skip it. The subtree γ contains %(A, 2) = 8 letters. It is
more than 9 − 5 = 4, therefore the path continues in this subtree. We push the
pair (A, 3), the position of γ, into the stack and we proceed to the subtree δ.
It contains %(A, 1) = 3 letters, less than 4, so we proceed to ε. This subtree
contains %(B, 1) = 2 letters, more than 4− 3 = 1, therefore the path continues in
this subtree. We push the pair (A, 2) into the stack, because we are going down
to the subtree ε. The stack now contains d−1 = 2 items, therefore we reached
the bottom of the tree and the stack is (A, 3), (A, 2).

• Finally, we determine the starting position in the substitution rule we found
by skipping the remaining letters from the beginning. In our example, the ˇrst
letter to be generated is θ(B)2 because n− 8 − 5 − 3 = 1.

The formal version of this informal description is shown in Algorithm 2. The
lenghts of words θj(a) can be simply calculated by %(a, j).

The algorithm just given can be generalized easily to skipping of arbitrary n
letters from arbitrary position in the sequence. Indeed, instead of starting with
empty stack and descending in the tree, we can use an already existing stack and
start by climbing up the tree, using a procedure similar to the one mentioned
in the second item of the above given description. After a certain number of

GENERATING THE FIBONACCI CHAIN IN O(log n) SPACE 233

steps, the direction of traversing will change and we will start going down toward
the deepest level. It may happen that it is required to skip more letters than
the number of letters remaining on the deepest level is. In such a case, a slight
modiˇcation of Algorithm 2 can be applied to the remaining letters that did not ˇt
in the previous level. The modiˇcation consists in skipping the ˇrst left subtree
α of the tree root.

Theorem 3. Skipping n letters in the Fibonacci chain requires O(log n)
operations.

Stack := empty; a := t0;
if (n > |θ(a)|) then
Find d such that |θd−1(a)| ≤ n < |θd(a)|;
repeat
i := 1; d := d− 1;
while (|θd(θ(a)i)| ≤ n) do
n := n− |θd(θ(a)i)|;
i := i+ 1;

enddo;
stack.push(a, i);
a := θ(a)i;

until (d = 1);
endif;
Start generating with θ(a)n+1.

Algorithm 2: Skipping n letters and creating the stack.

CONCLUSION

The concept of substitution trees and their traversals can be, without any
modiˇcations, applied to an arbitrary substitution on any ˇnite alphabet. The cut
and project sequences [5] used in the APRNG design [1] have generally much
larger alphabets than just two letters. In any case, the O(n) time and O(log n)
space complexity of generation is preserved. For skipping n letters, the ability
to determine the exact number of letters on any level of any tree is essential.
In general, multiplications of matrices of substitutions [4] may be needed rather
than a simple calculation of a recurrent sequence like (1). Besides the matrix
operations, the algorithm also has O(log n) time complexity.

Skipping n letters does not necessarily require building the entire O(log n)
stack. In cases when only few points are to be generated (compared to the number

234 PATERA J.

of letters to be skipped), a certain number of the top items will never be used.
Indeed, it may happen that only a minor part of a single tree level is to be used
without the need of going too far towards the tree root. If the upper bound on
the number of letters to be generated is known in advance, Algorithm 2 can be
modiˇed in such a way that the stack items corresponding to the upper tree levels
will not be pushed into the stack. If, for example, at most m letters starting at the
letter tn are about to be generated, the stack. push operation in Algorithm 2 can
be ignored (i. e., not performed) as long as tn and tn+m are in the same subtree
of the node currently traversed in the while loop of Algorithm 2.

Let us conclude with some numbers. In our most efˇcient implementation
of the presented tree traversal, a single stack item consists just of one memory
pointer. On a 32-bit computer, a 1 KB stack can be used to generate F514 ∼ 10107

letters of the Fibonacci chain, i. e., 10107 elements of a binary aperiodic sequence
usable by the APRNG.

Acknowledgements. The author would like to thank L.-S. Guimond, Z.Mas\a-
kov\a, and E. Pelantov\a for their stimulating discussions and many suggestions
to the manuscript. This work was supported by the Bell Canada University
Laboratory, by the NATO Collaborative Research Grant CRG 974230 and by
the grant FRV_S 1927/2001 of the Czech Ministry of Education. The author is
also grateful for the hospitality of the Centre de Recherches Math\ematiques in
Montr\eal (Qu\ebec, Canada), where part of the work was done.

REFERENCES

1. Guimond L.-S., Patera J. Combining Random Number Generators Using Cut and Project Se-
quences // Czech. J. Phys. 2001. V. 26. P. 305Ä311.

2. Guimond L.-S., Patera J. Statistics and Implementation of Aperiodic Pseudorandom Number Gen-
erators. Preprint. 2000. Subm. to ®Appl. Num. Math.¯.

3. Knuth D. E. The Art of Computer Programming: Fundamental Algorithms. 3rd ed. Addison-
Wesley, 1997. V. 2.

4. Luck J.M. et al. The Nature of the Atomic Surfaces of Quasiperiodic Self-Similar Structures // J.
Phys. A: Math. Gen. 1993. V. 26. P. 1951Ä1999.

5. Mas+akov+a Z., Patera Ji-r+., Pelantov+a E. Substitution Rules for Aperiodic Sequences of the Cut and
Project Type // J. Phys. A: Math. Gen. 2000. V. 33. P. 8867Ä8886.

6. Queff+elec M. Substitution Dynamical Systems: Spectral Analysis. Berlin: Springer, 1987.

